Insiemi convessi e funzioni convesse

Insiemi convessi

Definizione 1 (Insieme convesso). Diciamo che un insieme $C \subset \mathbb{R}^d$ è convesso se

 $tx + (1-t)y \in C$ per ogni $t \in [0,1]$ e per ogni coppia di punti $x, y \in \mathbb{R}^d$.

Osservazione 2. Ogni insieme convesso è connesso per archi.

Esercizio 3. Per ogni $x_0 \in \mathbb{R}^d$ ed ogni r > 0, la palla $B_r(x_0)$ è convessa.

Esercizio 4. Siano C_1 e C_2 due insiemi convessi in \mathbb{R}^d . Verificare che l'intersezione $C_1 \cap C_2$ è un convesso.

Esercizio 5. Sia C un insiemi convesso in \mathbb{R}^d . Dimostrare che la parte interna e la chiusura di C sono convessi.

Funzioni convesse

Definizione 6 (Funzione convessa). Diciamo che una funzione $F : \mathbb{R}^d \to \mathbb{R}$ è convessa, se

$$F(tx + (1-t)y) \le tF(x) + (1-t)F(y)$$

 $per\ ogni\ t\in [0,1]\ e\ per\ ogni\ coppia\ di\ punti\ x,y\in \mathbb{R}^d\,.$

Più in generale, se $C \subset \mathbb{R}^d$ è un convesso, allora diciamo che una funzione $F: C \to \mathbb{R}$ è convessa se

$$F(tx + (1-t)y) \le tF(x) + (1-t)F(y)$$

per ogni $t \in [0,1]$ e per ogni coppia di punti $x, y \in C$.

Esercizio 7. Dimostrare che la funzione

$$\delta: \mathbb{R}^d \to \mathbb{R}$$
 $\delta(x) := |x|,$

è convessa.

Esercizio 8. Dimostrare che se l'insieme C è convesso e chiuso, allora la funzione distanza

$$\delta_C : \mathbb{R}^d \to \mathbb{R}$$
 $\delta_C(x) := \min\{|x - y| : y \in C\},\$

è convessa.

Esercizio 9. Siano $F: \mathbb{R}^d \to \mathbb{R}$ e $G: \mathbb{R}^d \to \mathbb{R}$ due funzioni convesse.

(a) Dimostrare che la somma F + G è una funzione convessa.

(b) Dimostrare che la funzione $F \vee G : \mathbb{R}^d \to \mathbb{R}$, definita per ogni $x \in \mathbb{R}^d$ come

$$(F \vee G)(x) = \max\{F(x), G(x)\},\$$

è convessa.

- (c) È vero che il prodotto di due funzioni convesse è una funzione convessa?
- (d) È vero che il prodotto di due funzioni convesse e positive è una funzione convessa ?

Esercizio 10. Sia $F: \mathbb{R}^d \to \mathbb{R}$ una funzione convessa. Dimostrare che, per ogni $c \in \mathbb{R}$, l'insieme

$$\{F < c\} := \{x \in \mathbb{R}^d : F(x) < c\}$$

è convesso.

Esercizio 11. Sia $F: \mathbb{R}^d \to \mathbb{R}$ una funzione convessa che ammette un minimo su \mathbb{R}^d :

$$M = \min_{x \in \mathbb{R}^d} F(x).$$

Dimostrare che l'insieme

$$\{F = M\} := \{x \in \mathbb{R}^d : F(x) = M\}$$

è convesso.

Funzioni convesse in dimensione 1

Esercizio 12. Sia $F: \mathbb{R} \to \mathbb{R}$ una funzione convessa. Dimostrare che se

$$F(0) \le F(1),$$

allora $F \ \dot{e} \ monotona \ crescente \ su \ [1, +\infty).$

Osservazione 13. Sia $F : \mathbb{R} \to \mathbb{R}$ una funzione convessa. Se esistono due numeri reali a < b tali che $F(a) \le F(b)$, allora F è monotona crescente su $[b, +\infty)$.

Proposizione 14. Sia $F: \mathbb{R} \to \mathbb{R}$ una funzione convessa. Allora esiste il limite

$$\lim_{x \to +\infty} F(x).$$

Esercizio 15. Sia $F: \mathbb{R} \to \mathbb{R}$ una funzione convessa. Quale delle affermazioni seguenti è corretta?

- (i) $F: \mathbb{R} \to \mathbb{R}$ ha un minimo assoluto.
- (ii) Se F e positiva, allora $F: \mathbb{R} \to \mathbb{R}$ ha un minimo assoluto.
- (iii) $\lim_{x \to +\infty} F(x) = +\infty$.
- (iv) Non è possibile che $\lim_{x \to +\infty} F(x) = -\infty$.
- (v) Se $\lim_{x \to -\infty} F(x) = -\infty$, allora $\lim_{x \to +\infty} F(x) = +\infty$.
- (vi) Se $\lim_{x \to -\infty} F(x) \neq +\infty$ e $\lim_{x \to +\infty} F(x) \neq +\infty$, allora F è costante.

Esercizio 16. Se la funzione $F: \mathbb{R} \to \mathbb{R}$ convessa e limitata, allora è costante.

Funzioni convesse in dimensione 2

Esercizio 17. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione convessa. Dimostrare che la funzione

$$F: \mathbb{R}^2 \to \mathbb{R}, \quad F(x,y) = f(x)$$

è convessa.

Esercizio 18. Sia $F: \mathbb{R}^2 \to \mathbb{R}$ una funzione convessa. Dimostrare che per ogni $(a,b) \in \mathbb{R}^2$ la funzione

$$f_{a,b}(t): \mathbb{R} \to \mathbb{R}, \quad f_{a,b}(t) = F(ta, tb)$$

è convessa.

Esercizio 19. Sia $F: \mathbb{R}^2 \to \mathbb{R}$ una funzione convessa. Dimostrare che se

$$\lim_{x \to +\infty} F(x,0) = -\infty \qquad e \qquad \lim_{y \to +\infty} F(0,y) \quad \dot{e} \text{ finito},$$

allora

$$\lim_{t \to +\infty} F(t,t) = -\infty.$$

Esercizio 20. Sia $F: \mathbb{R}^2 \to \mathbb{R}$ una funzione convessa. Dimostrare che se

$$\lim_{x \to -\infty} F(x,0) = -\infty \qquad e \qquad \lim_{y \to -\infty} F(0,y) = -\infty,$$

allora

$$\lim_{t \to +\infty} F(t,t) = +\infty.$$

Esercizio 21. Sia $F: \mathbb{R}^2 \to \mathbb{R}$ una funzione convessa. Dimostrare che se i limiti

$$\lim_{x \to -\infty} F(x,0) \qquad e \qquad \lim_{y \to -\infty} F(0,y)$$

sono finiti, allora

$$\lim_{t \to +\infty} F(t,t) = +\infty.$$

Esercizio 22. Sia $F: \mathbb{R}^2 \to \mathbb{R}$ una funzione convessa e tale che

$$F(1,1) = F(-1,1) = F(1,-1) = F(-1,-1) = 0.$$

 $Dimostrare\ che\ F\geq 0\ in$

$$\{(x,y) \in \mathbb{R}^2 : |x| \ge 1 \ e \ |y| \ge 1\}.$$

CONTINUITÀ DELLE FUNZIONI CONVESSE

Lemma 23. Siano M>0 e r>0 due costanti e $F:[-r,r]\to\mathbb{R}$ una funzione convessa tale che

$$F(0) = 0, \quad F(r) \le M, \quad F(-r) \le M.$$

 $Dimostrare\ che$

$$-\frac{M}{r}\,t \leq F(t) \leq \frac{M}{r}\,t \qquad per \ ogni \qquad t \in [-r,r].$$

Teorema 24. Sia $F: \mathbb{R}^d \to \mathbb{R}$ una funzione convessa. Allora F è continua.